ABSTRACTS – 2011

91 Annual Meeting of the American Society of Ichthyologists & Herpetologist July 6-11, 2011, Minneapolis, Minnesota, USA

through the two consecutive mass extinctions on Pangaea and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans.

0297 Fish Evolution, Phylogeny, & Systematics, Minneapolis Ballroom F, Monday 11 July 2011

<u>Masaki Miya</u>¹, Tetsuya Sado¹, Kenji Saitoh², Michael H. Doosey³, Henry L. Bart, Jr.³, Ignacio Doadrio⁴, Yazdan Keivany⁵, Jiwan Shrestha⁶, Vachira Lheknim⁷, Rafael Zardoya⁴, Mutsumi Nishida⁸, Richard L. Mayden⁹

¹Natural History Museum and Institute, Chiba, Chiba, Japan, ²National Research Institute of Fisheries Science, Kanagawa, Japan, ³Tulane University, New Orleans, LA, USA, ⁴Museo Nacional de Ciencias Naturales, Madrid, Spain, ⁵Isfahan University of Technology, Isfahan, Iran, ⁶Nepal Academy of Science and Technology, Kathmandu, Nepal, ⁷Prince of Songkhla University, Songkhla, Thailand, ⁸Atmospheric and Ocean Research Institute, University of Tokyo, Chiba, Japan, ⁹Saint Louis University, St. Louis, MO, USA

The Mitogenomic Supermatrices to Resolve Cypriniformes Tree of Life: An Empirical Approach Based on 472 Complete and 2171 Partial mtDNA Sequences

Fishes of the order Cypriniformes are almost completely restricted to freshwaters and comprise over 4,000 species placed in 6+ families, each with poorly defined subfamilies and/or tribes. This study attempts comprehensive resolution of the cypriniform phylogenies by combining a mitogenomic tree as a backbone constraint for the robust higher-level relationships and numerous partial sequences downloaded from GenBank for the reconstruction of lower-level relationships within the constrained clades. The mitogenomic tree is based on 472 sequences (including 6 outgroups) and the resulting best-scoring ML tree is congruent with the previous molecular phylogenies based on both mitogenomes and nuclear genes. A total of 17,057 partial sequences from cypriniforms were available from GenBank and they were sorted into 9 mitochondrial genes from 1138 species, of which 1039 species were those from the cyt *b* gene alone. Thus we constructed two matrices comprising 1) cyt b gene only (CB dataset: 1134 bp from 1511 spp.; missing data 2.53%) and 2) all 9 genes (ALL dataset: 9784 bp from 1610 spp.; missing data 57.6%) and the two matrices were subjected to partitioned ML analyses with the mitogenomic tree as a backbone constraint. The best-scoring ML tree based on the CB dataset derived from 24 runs using a fast bootstrap (BS) option in RAXML places all species from the partial sequences (1039 spp.) in reasonable positions, with 62.2% of the internal branches being supported by $\geq 80\%$ BS probabilities. The ALL dataset is currently analyzed in a similar manner and the preliminary results will be presented.